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Abstract
Amyotrophic lateral sclerosis (ALS) is a non-demyelinating neurodegenerative disease mostly found in 
adults between 40 to 60 years old.  This disease is usually prevalent in males, however it’s irrespective 
to the different genders. ALS is progressive and within 2-5 years of diagnosis ulimately ends with 
death. The majority of ALS cases is sporadic (90%) and is recorded without any defined aetiology.  
The other 10-12% of cases is recognized from mutations in more than 20 genes. The genes reported to 
cause ALS are Superoxide Dismutase 1 (SOD1), TAR DNA Binding Protein (TDP), Fused in Sarcoma, 
(FUS), Chromosome 9 Open Reading Frame 72 (c9orf72) and Vesicle-Associated Membrane-Protein-
Associated Protein B (VAPB). Furthermore, abnormal lipid metabolism with higher LDL/HDL ratio 
was reported in ALS patients. The aetiology of ALS is shown in the schematic diagram below (Figure 1)

Due to the multi-nature of ALS causative factors and symptoms, there is no specific therapy for ALS 
today. However, this paper will touch on potential therapies that are in practice or may come up in the 
future.  The goal is to maintain and improve the function of motor neuron, the well-being and quality 
of life for ALS patients. Until then, we have to rely on the symptomatic treatment and rehabilitative 
measures to support the patient’s quality of life.

Figure 1. Aetiology of Amyotrophic lateral sclerosis (ALS)
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Present management of the complications of ALS 
patients

Patients with ALS eventually will need devices to help assist 
their breathing. The muscles progressively weaken, which 
ultimately leads to respiratory failure and death. Both physical 
therapy and occupational therapy can help and individual to 
independently maintain physical function. Other procedures 
that are commonly adopted include speech therapy, nutritional 
support and the social and mental health support.. 

Therapeutic Interventions
A schematic diagram of different therapeutics approaches is 

shown in Figure 2.
Antidepressants

Riluzole was approved by the US Food and Drug 
Administration (FDA) in 1995. It was reported to have 
antidepressant effects in both open-label trials [40, 41] and 
can be used against ALS [42]. Side effects of this drug include 
dry mouth and weight gain, which may help with other ALS 
symptoms of too much saliva in the mouth and weight loss.

Introduction
Amyotrophic lateral sclerosis (ALS) primarily involves 

defects in the brain and spinal cord motor neurons. This results in 
progressive muscular atrophy, paralysis, respiratory dysfunction 
and disturbances in speech and swallowing. This disease is 
progressive so typically within 3-5 years after diagnosis, the 
respiratory failure results in death [1].

Diagnosis
Early diagnosis of ALS is extremely difficult because the 

disease bears close similarities with other neurological disorders, 
such as Parkinson’s disease (PD) and Alzheimer’s disease (AD). 
Therefore, it’s essential to have knowledge on the evaluation 
of perfect biomarkers for ALS at its early stage, during the 
progression and treatment stages to understand the proper 
mechanisms of disease pathology.

An electromyogram (EMG) can differentiate the muscle 
disorders other than the ALS. Nerve conduction study can 
determine the nerve damage, if any, unrelated to ALS. An MRI 
can reveal spinal cord tumors, herniated disks in neck that might 
be causing the ALS symptoms. 

Diagnostic biomarkers (Table-1):

Biochemical Biomarkers Cellular Biomarkers Genetic Biomarkers
·   Elevated metalloproteinase-9 (MMP-9)  [2] 
·   Increased levels of MMP-2  [3,4]

·   The loss of motor neurons is  the primary 
neuropathological hallmark of ALS [20] ·   Mutations in SOD1 [28] 

·   Elevated Extracellular matrix 
metalloproteinase inducer (EMMPRIN) [3]

·   Decrease in the expression of human 
leukocyte antigen by ALS monocytes [21] ·   Mutations in tardbp (TDP-43) [29-31] 

·   Elevated level of Inflammation Markers, 
like MCP-1, TNFa, IL-6, IL-7, Eotaxin, GM-
CSF, OX40, etc. [5-9] 

·    An increase in the amount of natural killer 
T lymphocytes [22]

·   Binding of mutant C9orf72 to 
trimethylated histones was detected in ALS 
mononuclear cells [32] 

·   Hypermetabolism, and hyperlipidemia 
[10-12] ·    High neutrophil-to-lymphocyte ratio [23] ·   Mutations in FUS gene [33-36]

·   High concentrations of lead in blood and in 
the CSF [13-15] 

·    Decrease in the number of regulatory T 
cells [21,22] 

·   Vesicle-associated membrane protein-
associated protein B (VAPB)  [37]

·   Low level of type I procollagen[16-19].
·    High levels of neurofilament light chain 
in the serum of ALS  patients [24,25], as also 
bserved in the CSF [26,27].

Table 1. Diagnostic biomarkers

Figure 2. Outlook of therapies of ALS
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Scope of Gene Therapy
SOD1 Mutation Therapy

Only a few percent of ALS patients have a known gene defect. 
Gene therapy could be designed for a SOD1 defect, however this 
therapy may not work for other ALS patients. In fact, if a neuron 
carries a mutated SOD1 gene, that nerve cell can survive if the 
neighboring support cells and glia have the normal gene. Gene 
therapy in ALS can also target the glial cells and neurons to 
produce positive effects [41].
FUS Mutation Therapy

Ionis is developing another gene therapy called ION363 
[42]. This therapy treats patients with FUS mutations. Mutations 
in this gene are found in about five percent of people with 
familial ALS and about one percent with sporadic or singleton 
ALS. Patients that have the FUS mutation tend to develop ALS 
earlier and have a shorter life span than people with other gene 
mutations.
Boosting Helpful Trophic Factors

Gene therapy could be the way to provide a steady supply 
of trophic factors to neurons that are being damaged. In fact, 
boosting helpful trophic factors directly in the location where 
the damage exists could be beneficial [43]. 

A summary of present gene therapy approaches for ALS are 
tabulated below (Table-2):
Clinical Trials with Gene Therapy

ATLAS is the current phase III clinical trial for tofersen. 
Basically, this testing is done on people who are pre-symptomatic, 
which means they do not have any ALS symptoms but are likely 
to develop them later on [45].

Helixmith is testing a gene therapy called Engensis that 
could potentially help patients suffering with ALS. This therapy 
is currently undergoing a phase II clinical trial to determine if it 
successfully impacts people with ALS [46].

There are many types of stem cells, including induced 
pluripotent stem cells (iPSCs) that can be used for potential cell 
therapy of ALS. iPSCs are derived from adult human tissues and 
shown to differentiate into astrocytes that support the nerve 
cells. In addition, mesenchymal stem cells (MSCs) and neural 
stem cells (NSCs) are safe and potentially effective cell types for 
ALS cell therapy. However, monitoring and verifying these cell 
types long-term safety and efficacy before using in humans is 
essential.
MSCs

Mesenchymal stem cells (MSCs) were first described by 
Friedenstein et al. in 1970 in a study using bone marrow 
mononuclear cells as adherent clonogenic cells [47]. MSCs are 
considered fibroblast colony–forming units and are present a 
high in vitro replication capacity. MSCs can be isolated from 
a variety of tissues, which include bone marrow, muscle tissue, 
adipose tissue, skin, cartilage, blood vessels, in menstrual blood 
and tooth pulp. These cells acquire a fibroblast-like appearance 
that expresses CD105, CD73 and CD90 markers. Unfortunately, 
they do not express CD45, CD34 or CD14 markers [48,49].

To date, MSC therapy has no cases of adverse events, such 
as teratomas reported. Therefore, MSC therapy is considered to 
be safe and beneficial because there are no ethical limitations 
associated with embryonic or fetal stem cells. MSCs present 
the basic properties of stem cells. Such properties include self-
renewal, multilineage differentiation potential, clonality, and the 
capability to regenerate tissue in vivo. MSCs are considered to 

SOD1

Gene Therapy Gene Therapy Apic Bio 
[https://clinicaltrials.gov/ct2/show/study/NCT04856982]

Antisense oligonucleotide Tofersen Biogen 
[https://www.biogen.com/en_us/pipeline.html]

Gene therapy
Voyager Therapeutics

[https://www.globenewswire.com/en/search/organization/Vo
yager%2520Therapeutics%CE%B4%2520Inc%C2%A7]

C9orf72

Antisense oligonucleotide BIIB078

Biogen 
[https://alsnewstoday.com/news-posts/2022/04/11/biogen-io-
nis-discontinuing-biib078-development-c9orf72-associated-

als/]

Gene therapy

Pfizer/Sangamo 
[https://www.pfizer.com/news/press-release/press-release-

detail/sangamo_and_pfizer_announce_collaboration_for_de-
velopment_of_zinc_finger_protein_gene_therapy_for_als]

Gene therapy TPN-101 Transposon 
[https://www.als.net/als-research/clinical-trials/599/]

Antisense oligonucleotide WVE-004 Wave [44] WAVE LIFE SCIENCES

ATXN2 Antisense oligonucleotide) BIIB105 Biogen
[https://www.alzforum.org/therapeutics/biib105]

FUS Antisense oligonucleotide) ION363 Ionis 
[https://www.ionispharma.com/medicines/ion363/]

Table 2. Present Gene Therapy Approaches for ALS
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be multipotent cells because they can differentiate into several 
mesenchymal lineages, like in bone, cartilage, adipose and 
muscle tissue [48,49].

The therapeutic potential of MSCs is linked to their 
immunoregulatory paracrine activity, with the secretion soluble 
factors (secretomes), including other growth factors, like 
vascular endothelial growth factor (VEGF), fibroblast growth 
factor 2 (FGF-2), insulin-like growth factor 1 (IGF-1), platelet-
derived growth factor (PDGF), and hepatocyte growth factor 
(HGF) [50]. Anti-inflammatory factors, such as interleukin-10 
(IL-10), transforming growth factor beta 1 (TGF-β1), and 
mechanisms linked to exosome and mRNA release are also 
included with MSCs [51,52]. 

Animal studies have yielded promising results for MSC 
therapy. For example, transgenic mutant SOD1 mice were 
administered MSCs via intrathecal injection, intravenous 
injection or a combination of both. The procedure was found 
to be safe and effectively delayed motor impairment, reduce 
inflammation and promoted the secretion of cytokines and 
growth factors. This resulted in the mice having a longer life 
span because of an increase in cell survival [53,54].
Astrocytes

Recent studies discovered that even with normal aging, 
astrocytes become less supportive to motor neurons (MNs). This 
suggests there is a role with aging and the significant MN death 
when related to astrocytes in a rodent model of familial ALS 
[55,56]. More importantly, Dass and Svendsen found increased 
levels of MN survival in co-culture of priming aged wild-type 
and SOD1-G93A astrocytes with glial-derived neurotrophic 
factors in the media [57]. Astrocyte precursors or SC-derived 
astrocytes promote axonal growth, can modulate the host 
immune response, help deliver neurotrophic factors and provide 
protective molecules against oxidative or excitotoxic insults. In 
addition, they support mechanisms involved in myelination 
and oligodendrocyte myelination along with other positive 
benefits [58-60]. Astrocyte replacement-based therapies in ALS 
patients are to alleviate overall astrocyte dysfunction, deliver 
neurotrophic factors to degenerating spinal tissue and stimulate 
endogenous CNS repair abilities [60].
NSCs

An ideal source of cell tissue for neural cell replacement must 
be renewable because that eliminates the need for transplantation 
of primary fetal tissue. It must also allow viability, sterility, cell 
composition and cell maturation to be controlled, while being 
inherently nontumorigenic. Transplanted NSCs exerted their 
beneficial effects through an immune-modulatory action, which 
involves both innate and adaptive (local vs systemic) immune 
responses (e.g., microglial and astroglial scar reduction, 
T-lymphocyte inhibition, etc.), secretion of trophic factors and 
cross- correction of missing enzymatic activities. 
iPSCs

A recent, yet interesting source of SCs for clinical 
transplantation is represented by iPSCs. iPSCs can be generated 
from somatic cell types through ectopic expression of a defined 
set of transcription factors, acquiring the features of embryonic 
SCs and thus bearing the potential to give rise to virtually any 
cell type, including inaccessible tissues such as neurons. This 
method was described first by Shinya Yamanaka where MNs 
were derived from an older patient with a familial form of ALS 
[61,62]. Human iPSCs can be represented as an ideal cell source 
for cell therapy.  If the iPSCs can be derived from the patient, it 

will prevent an immune rejection. Therefore, iPSC technology 
may provide benefits for the use of autologous and allologous 
cell therapy. 

On the other hand, iPSC clinical use is still highly debated 
over because iPSC safety must be demonstrated. iPSCs have 
a well-known tumorigenic potential [63]. Given the possible 
genetic causes of sporadic ALS, a genetic alteration could be 
present in the autologous-derived SCs. The earliest strategies for 
the induction of iPSCs are by using viral vectors. Unfortunately, 
the risks of insertional mutagenesis and transgene reactivation 
can cause limitations during clinical use [64]. In order to bypass 
these safety concerns, there are numerous alternative methods 
for inducing pluripotency being developed. Recently, a new 
small molecule has been identified that provide enhancements 
for somatic cell reprogramming that can compensate for three 
of the four canonical factors (Oct4, Sox2, Klf4 and c-Myc) [65].
Stem Cell Therapy in Clinical Trials for ALS

These cells can be injected directly into the muscle or in the 
spinal canal. Trials in 2016 demonstrated that this treatment 
was safe and well tolerated.  The results showed a slow in the 
progression of the disease in the six months after the injections 
started when it was compared to six months prior to the 
treatment [66].

There is a clinical trial at phase 3 (NCT03280056) that is 
assessing the safety and efficacy of repeated NurOwn injections. 
Right now, the trial is currently recruiting patients in the US 
from California, Massachusetts and Minnesota. ALS patients 
will basically receive three, intrathecal NurOwn or placebo 
injections at bi-monthly intervals [67].

Another clinical trial at phase 1/2 (NCT03482050), is 
investigating the use of astrocytes derived from human 
embryonic stem cells that is known as AstroRx. 21 patients are 
currently being recruiting at a single site in Israel. AstroRx will 
be injected into the spinal cord of patients at the early stage of 
the ALS disease [68].

Conclusions
• Cell therapy has emerged as a promising treatment strategy 

for ALS.  In fact, there are  constant advances being made 
with the use of biomaterials that enhances the benefits of 
stem cells. 

• However, research and studies still need to be conducted 
because more information remains to be learned and 
understood about ALS. 

• Further research in the form of basic studies and well-
designed clinical trials may shed more light on these 
promising therapeutic strategies. 
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