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Introduction
The materials had ruled the market as far as 
their flexibility for item’s applications When the 
introduction of polymer materials science in the 
1930s.  Stress is defined as the force per unit area. 
Thus, the formula for calculating stress is [1-11]:

 σ = F/A

Where σ identifies stress, F is load and A is the cross 
sectional area. The most usual use units for stress 
are the SI units, or Pascal’s (or N/m2), although 
other units such as psi (pounds per square inch) are 
sometimes used. Forces can be applied in different 
directions like Tensile or stretching, Compressive 
or squashing/crushing, Shear or tearing/cutting, 
and Torsional or twisting [11-23].

This gives rise to numerous corresponding types 
of stresses and hence measure/quoted strengths. 
Since data sheets often quote values for strength 
(as compressive strength), these values are purely 
uniaxial, and it should be noted that in real life 
several different stresses can be acting [22-41].

The tensile strength is defined as the maximum 

tensile load a body can withstand before failure 
divided by its cross sectional area. This property is 
also sometimes referred to Ultimate Tensile Stress 
or UTS [39-49]. Figure 1 illustrates Ultimate tensile 
strength, often shortened to tensile strength, ultimate 
strength, or Ftu within equations, is the capacity of a 
material or structure to withstand loads tending to 
elongate, as opposed to compressive strength, which 
withstands loads tending to reduce size.

Typically, ceramics perform poorly in tension, while 
metals are quite good. Fibres such as glass, Kevlar 
and carbon fibre are often added polymeric materials 
in the direction of the tensile force to reinforce or 
improve their tensile strength [48-54].

Compressive strength is defined as the maximum 
compressive load a body can bear prior to failure, 
divided by its cross sectional area [50-59]. Figure 
2 shows Compressive strength or compression 
strength is the capacity of a material or structure to 
withstand loads tending to reduce size, as opposed to 
tensile strength, which withstands loads tending to 
elongate. In other words, compressive strength resists 
compression, whereas tensile strength resists tension.
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Results and Discussions
Zero stress at neutral axis and compressive stresses in layers below the 
neutral axis since a material is tested in flexure that under bending; 
tensile stresses are produced on the top layers. In isotropic materials, 
when the material fails, the corresponding load is taken for calculation 
of flexural strength. As the isotropic material fails in tensile portion; the 
strength is nothing but its tensile strength. Hence when tested using 
tensile mode on a universal testing machine, also known as a universal 
tester, materials testing machine or materials test frame, is used to test 
the tensile strength and compressive strength of materials. An earlier 
name for a tensile testing machine is a tensometer [67-78]. 

Due to tensile strength and according to flexural loading test set-up, 
it can be called as flexural strength. Ideally both should be same. In 
fact for ceramic materials; tensile strength is obtained using 3-point 
bending set-up because tensile specimens for ceramic materials 
cannot be prepared. Only difference is; if some defect is present in the 
specimen; irrespective of its location; it affects tensile strength in the 
same manner because uniform tensile stresses are produced across the 
whole cross section. In bending situation however; defects will affect 
the strength differently depending upon their location. A defect nearer 
top or bottom surface will have significant effect as compared to the 
same type of defect located nearer or on the neutral axis. Hence the 
strength in two modes of testing may differ [75-89]. 

It has been given a universal formula for the relationship between 
tensile strength / modulus and flexural strength / modulus. This 
relationship depends on the type of the material and geometry of the 
sample. Theoretically, it should be the same [88-99].

The difference between the modules can be explained by influence 
of complex stress state of bent sample. If the material has different 
properties in tension / compression and to do so is not perfectly linear, 
the module computed using the linear theory is a certain "averaging" 
[98-101].

In case of differences in flexural strength and tensile strength can be 
affected by scale effects that can also be explained by statistical effects. 
The maximum stresses occur in a small area of the bending section, 

Ceramics typically have good tensile strengths and are used under 
compression e.g. concrete.

Shear strength is the maximum shear load a body can withstand 
before failure occurs divided by its cross sectional area [50-51]. Figure 
3 illustrates shear strength is the strength of a material or component 
against the type of yield or structural failure when the material or 
component fails in shear. A shear load is a force that tends to produce a 
sliding failure on a material along a plane that is parallel to the direction 
of the force.

This property is relevant to adhesives and fasteners as well as in 
operations like the guillotining of sheet metals [51-56].

Torsional strength is the maximum amount of torsional stress a body 
can withstand before it fails, divided by its cross sectional area [58]. 
Figure 4 shows the ability of a material to withstand a twisting load. It 
is the ultimate strength of a material subjected to torsional loading, and 
is the maximum torsional stress that a material sustains before rupture. 
Alternate terms are modulus of rupture and shear strength.

This property is relevant for components such as shafts.

Yield strength is defined as the stress at which a material changes from 
elastic deformation to plastic deformation. Once this point, known as 
the yield point is exceeded, the materials are no longer return to its 
original dimensions after the removal of the stress [58-68].

Figure 1. Tensile strengh

Figure 2. Compressive strength

Figure 3. Shear strength

Figure 4. Torsional strength
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theoretically only on the edge. Since the entire cross section of the sample 
is under the maximum stresses during the tension test. Therefore, it is 
more likely to find a "weak point" from which the destruction starts. 
Correspondingly, smaller samples show greater strength than bigger 
ones [100-111].

A ratio between strength at a bend and strength at extension is difficult 
to receive the general. Theoretically, the problem can be solved having 
a big data file on strength at extension. Then it is possible to use the 
WeybulI-Gnedenko approach in case of the linear chart of extension 
and to consider large-scale effect that at extension more defects get to a 
zone of the maximum deformations [110-119].

As for the elasticity module, my opinion that it is identical at a bend and 
at extension and at compression. The methodical difference arises first 
because of deformations of shift at a bend, secondly because of a sample 
deformation in points of application of loading. For homogenous 
material or where modulus in tension and compression is same, both 
moduli should theoretically match [118-123].

Conclusions 
This for example a thermoplastic material or the thermoplastic 
materials filled by particles. For a thermoplastic material, it can be 
found out the relationship. However, for the thermoplastic materials 
filled by particles, relationship could be found.  If the particles have a 
high Young's modulus, tensile modulus of the filled thermoplastics can 
be higher than flexural modulus [115-119].
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