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Introduction
Over the past four decades, the theory 

in solid-state nuclear magnetic resonance 
(SSNMR) has emerged into a standard tool for 
spin dynamics calculations. In most instances, 
time-dependent linear differential equation 
towards obtaining propagators can be obtained 
with the average Hamiltonian theory (AHT) 
[1-22] and the Floquet theory (FLT) [23-
26].  For more complex SSNMR experiments 
requiring more than four frequency 
modulations, the combination of AHT and 
FLT called Floquet-Magnus expansion 
(FME) [27-29] has proven to be particularly 
reliable. The control of spin systems using the 
FME approach can provide a more intuitive 
understanding of spin dynamics processes. In 
this manuscript, the main topics concern the 
application of FME to the Phase Modulated 
Lee-Goldburg (PMLG) radiation experiment 
in Solid State NMR [30]. Vinogradov and 
co-workers introduced the PMLG to achieve 
line narrowing not by frequency switching 
(FSLG), but by a series of pulses with well-
defined phases [30]. Unlike the FSLG that 
uses only one step in the jumping of frequency 
together with a phase shift, the PMLG uses 

a large number of steps given by the number 
of pulses. The PMLG has the ability to adapt 
in many different situations such as handling 
the amplitudes and phases of the pulses in a 
way the FSLG experiment may not be capable 
of executing. This pulse sequence built-up 
several possibilities to improve the efficiency 
of line narrowing in related experiments such 
as hetero-correlation investigations [31,32]. 
In recent years, Vinogradov et al. presented 
a description of PMLG experiments using a 
bimodal Floquet theory treatment [33,34]. This 
bimodal is a version of Shirley’s Floquet theory 
approach that yielded an appropriate theoretical 
framework for the description of the PMLG 
under magic-angle (MAS) influence [24]. The 
current work consists on evaluating the FME 
terms for the PMLG radiation experiment. The 
topic of FME is well known in mathematics and 
the scientific community and its investigation is 
important and useful in various pulse sequences 
such as PMLG. In spin dynamics, obtaining the 
propagators is of major interest in solving a 
time-dependent linear differential equation. The 
quantum propagator U (t) generally satisfies the 
time-dependent Schrodinger equation, which is 
difficult to solve except if the Hamiltonian H 
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Abstract
This work uses the Floquet-Magnus expansion approach to investigate the spin system evolution during 
the phase modulate Lee-Goldburg radiation experiment. Until now, the Frequency switched Lee-
Goldburg and its variant called the Phase module Lee-Goldburg have been treated by only the average 
Hamiltonian theory and the bimodal Floquet approach. In this article, we use the expansion schemes of 
the Floquet-Magnus expansion to calculate the effective Hamiltonian and propagator during the spin 
dynamics. We present a remarkable iterative approach for the Floquet-Magnus expansion. Our work 
unifies and generalizes existing results of the Floquet-Magnus expansion and delivers illustrations of 
novel springs that boost previous applications that are based on the classical information. The method 
presented could plays a major role in the interpretation of a number of fine NMR experiments in solids, 
which provide significant new insight in spin physics. The generality of the work points to potential 
applications in problems related in solid-state NMR and theoretical developments of spectroscopy as 
well as interdisciplinary research areas whenever they include spin dynamics concepts. The considered 
method of Floquet-Magnus expansion has recently found new major areas of applications such as in 
topological materials..



Page 2 of 6

Eugene Stephane Mananga, et al. Japan Journal of Research. 2023;4(6):1-6.

Japan J Res. (2023) Vol 4 Issue 6

(t) is time independent (H) or it commutes with itself at two 
different times. The dynamics of a quantum system under a 
time-dependent Hamiltonian is an important general problem in 
various areas of chemical and physical chemistry [35]. In several 
situations such as the cases of the adiabatic and strong-collision 
limits [36,37], some approaches on the time dependence of 
the Hamiltonian allow approximate solutions to be obtained 
as perturbation expansions. Llor [38] studied the equivalence 
between dynamical averaging methods of the Schrodinger 
equation, with for example, the AHT and the FLT. But it was found 
that the results provided by the two methods are incompatible in 
the analysis of various multiple-pulse sequences in NMR [17-
22,26]. Several authors such as Feldman and co-workers [39], 
Goldman and co-workers [40], Buishvilli and co-workers [41], 
and Maricq [26] reported remarkable contributions to unifying 
the AHT and FLT. One of the successful attempts was made 
by Llor [38] who derived a clear relationship between the two 
perturbative approaches (AHT and FLT) by reformulating the 
FLT in terms of a static block-diagonalization procedure known 
as van Vleck transformation. This restructuration proved that 
the effective Hamiltonians of both perturbative methods are 
equivalent. One important physical example in which the 
FME have been applied successfully is the periodically driven 
harmonic oscillator. Also, Klarsfeld and Oteo [42] applied the 
FME approach to a periodically driven harmonic oscillator to 
obtain a remarkable feature consisting in the infinite Floquet-
Magnus expansion solved with the expression F determining the 
spinning sideband intensity and the function  useful to evaluate 
the spin behavior during or in between the RF pulses.

In the following section II, we present a remarkable iterative 
approach for the Floquet-Magnus expansion based on the 
formulation described in the appendix. In Section III, we 
effectively calculated the first two terms of the FME applied 
to the Phase Modulated Lee-Goldburg radiation experiment. In 
section V, we presented the work in a prospect of spin physics. 
Theoretical analysis

The Floquet-Magnus expansion expands its propagator in the 
form of a more general representation of the evolution operator 
as [28]

( ) ( ) (0)itFU t P t e P− +=  		  (1)
which eradicates the limitation of a strobe’s inspection. 

The function P(t) expresses the operator related to the time 
independent Hamiltonian F and the variable density operator. 
The FME propagator looks quite different than the Fer expansion 
propagator, which is also an alternative developing approach 
to control the spin dynamics in solid-state NMR [29]. In this 
article, we probed the spin-locking radiation experiment under 
sample spinning using the FME approach. Setting an infinite 
sequence (u1, u2, u3,...), the nth partial sum σn is the sum of the 
first n terms of the sequence,

1

n

n l
l

uσ
=

=∑  		  (2)

Mathematically speaking, a series converges if there exists a 
number p such that for any arbitrarily small positive number ƺ, 
there is a large integer N such that for all

n ≥ N			   (3)

n pσ ξ− ≤ 		  (4)
Convergence of the Magnus expansion has come into question 

in various applications. In general, the Magnus series does not 
converge unless the Hamiltonian is small in a proper sense. The 

divergence of the Magnus expansion guides to inconsistencies 
in the spin dynamics of solid-state NMR [40,46-49]. The FME 
can be reformulated in the sense of an iterative approach, which 
can be observed in the following picture. Let us start with the 
expansion of the propagator of the FME in a more general 
representation of the evolution operators expressed by the 
Eq. (1), where the time-independent Hamiltonian F is a series 
defined as

n
n

F F=∑
Using the exponential ansatz,

( )( ) i tP t e− Λ=
where the function

( ) ( )n
n

t tΛ = Λ∑
Is the argument of the operator P(t). The first term of the 

integrand, G1(t),
1( ) ( )G t H t= 

allows to compute the first term of the time-independent 
Hamiltonian, F1,

1 1
0

1 ( )
C

C

F G u du
τ

τ
= ∫

and the combination of the terms G1(t) and F1 generates the 
first term of the width of the spinning sidebands in MAS, Λ1 (t),

1 1 1 1
0

( ) (0) ( )
t

t G u du tFΛ = Λ + −∫

Next, the combination of Λ1 (t) and F1 allows to obtain the 
second term of the integrand, G2(t),

[ ]2 1 1( ) ( ) , ( )
2
iG t H t F t= − + Λ

Subsequently, the second term of the integrand G2(t), allows to 
compute the second term of the time-independent Hamiltonian 
F2, such as

2 2
0

1 ( )
C

C

F G u du
τ

τ
= ∫

and so on. Higher order terms can be computed numerically 
quite easily and symbolic calculations software can enable 
formal derivation of higher order terms. The above iteration can 
be summarized in the following picture or diagram,

( )
( )

1 1 1 1 1

1 1 2

2 2

( .(8)) ( .(9 )) ( .(9 )) ;
( .(10)) ;

( .(10)) ( .(11)) ...
.....
.....

G Eq F Eq a G F Eq b
F Eq G

G Eq F Eq

 
 
 
 → − ↓→ + − →Λ
 

Λ + → 
 → ↓ 
 
 
 

The initial condition Λ (0)  does actually influence the average 
Hamiltonian use in the interpretation of data. The general 
functions Fn and Gn(t) are defined as [28]

0

1 ( )
C

n n
C

F G u du
τ

τ
= ∫

0

( ) (0) ( )
t

n n n nt G u du tFΛ = Λ + −∫

Application of the FME to Phase Modulated Lee-
Goldburg radiation

TThe Hamiltonian describing the Phase Modulated Lee-
Goldburg (PMLG) radiation is giving by Vinogradov et al. 
[30,31],

(5)

(6)

(7)

(8)

(9a)

(9b)

(10)

(11)

(12)

(13)

(14)
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( ) ( ) ( ) ( )CS D RFH t H t H t H t= + +

where HCS(t), HCS(t), and HCS(t) are the chemical shift 
terms, dipole-dipole interaction terms, and the rf field term, 
respectively. As described by Bennet, et al., the dipolar 
interaction Hamiltonian has the form [43]

2

2
( ) 2 ( )rin tij ij

D D n Zi Zj i j i j
i j n

H t G e I I I I I Iωω + − − +

< =−

 = − + ∑∑

and the chemical shift (CS) interaction
2

2
( ) rin ti i

CS i Zi CS n Zi
i n

H t I g e Iωω ω
=−

 = ∆ + 
 

∑ ∑

The dipolar interaction ij
Dω  and the complex geometric 

coefficients ,ij i
n nG g , are depending on the polar angles (θij,φij) 

of the distance vector rij between the protons I and j in the 
rotor frame. The CS Hamiltonian contains a sum of isotropic 
chemical shift terms and chemical shift anisotropy terms. Let us 
write the RF Hamiltonian in the form [31],

( )1( ) ( ) cos ( ) sin ( )RF X YH t t I t I tω φ φ= +
where ω1(t) is the RF amplitude and φ(t) is a time dependent 

phase. For convenience, as suggested by Mehring and Waugh 
[44], the Hamiltonian describing the PMLG radiation can be 
assessed by its spin system transformation to the interaction 
frame described by the RF [30]. For simplicity reasons, the spin 
operators are represented by their irreducible tensor components 
and their transformation can be written as

1 ( ) ( ) ( )
l

RF lo RF lm lm
m l

U t T U t t Tα−

=−

= ∑

where URF(t) is the operator transforming the spin system 
to the interaction frame. For the cyclic transformation (time 
constant, ), the above equation can be developed with, 2

C
Ct
πω =  as

{ }( ) Cik t
lm lmkt e ωα α=∑

The Hamiltonian in the interaction frame is the sum of the 
two terms,

( ) ( ) ( )CS DH t H t H t= +  

where
1 2

1 1
1 2

( ) Cr ik tin ti i i i
CS CS n mk m

i m n k
H t g e e Tωωω ω α

∞

=− =− =−∞

 = ∆ + 
 

∑ ∑ ∑ ∑

and
2 2

2 2
2 2

( ) 6 Cr ik tin tij ij ij
D D n mk m

i j m n k
H t G e e Tωωω α

∞

< =− =− =−∞

 =  
 

∑ ∑ ∑ ∑

Other interaction Hamiltonians of decoupling multiple-
pulse schemes can have similar treatments as above if they are 
periodic in time
Calculation of the first and second order terms of FME

Considering the RF decoupling cycle time τc and the rotor 
period τr such as, τr = N τc  or ωc = Nωr. The first order contribution 
to the FME, for [ ],k∈ −∞ ∞  and n = {-1,-2,0,1,2} is -2

1
0

1 1 1 1 2 2

1 ( )

6

C

C

i i i i i ij ij ij
mk m CS n mk m D n mk m

i i i j

F H d

T g T G T

τ

τ τ
τ

ω α ω α ω α
<

=

= ∆ + +

∫

∑ ∑ ∑



This result is equivalent to the time-independent terms with the 
coefficients for k = 0 and n + kN = 0. We can generate uniquely 
the isotropic chemical shift terms if we set the conditions, N > 2 
and n + kN ≠ 0. Hence, we have

1 1 1
i i

mk m
i

F Tω α= ∆∑

The function, Λ1 (t), which provides a way for evaluating the 
spin behavior in between the stroboscopic observation points 
can be calculated as

1 1
0

1 1 2
( )

1 1 1 1
1 1 20 0

2 2
( )

2 2 1
2 2 0

( ) ( )

6

C

t

t t
iki i i i i i r n kN

mk m CS n mk m
i m k i m n k

t
ij ij ij i r n kN
D n mk m

i j m n k

t H d tF

T e d g T e d

G T e d tF

ω τ ω τ

ω τ

τ τ

ω α τ ω α τ

ω α τ

∞ ∞
+

=− =−∞ =− =− =−∞

∞
+

< =− =− =−∞

Λ = −

= ∆ +

+ −

∫

∑ ∑ ∑ ∑∑ ∑ ∑∫ ∫

∑ ∑ ∑ ∑ ∫



where we have set Λ1 (0) = 0 and used the condition, ωc = 
Nωr. Using both conditions

0, 0
2, 0

k n kN
N n kN
= + =

 > + ≠

we obtain,

( )

( )
( )( )

( )
( )( )

1

1 1 1
1

0

1 2

1 1
1 2

2 2

2 2
2 2

1( ) 1

1 1

16 1

r

r

r

ikN ti i
mk m

i m k r
k

i n kN ti i i
CS n mk m

i m n k r

i n kN tij ij ij
D n mk m

i j m n k r

t T e
ikN

g T e
i n kN

G T e
i n kN

ω

ω

ω

ω α
ω

ω α
ω

ω α
ω

∞

=− =−∞
≠

+

=− =−

+

< =− =−

Λ = ∆ − +

− +
+

−
+

∑ ∑ ∑

∑∑ ∑∑

∑∑ ∑∑

The second-order contributions to the FME can be calculated 
as the following,

[ ]{ }

( )

2 1 1
0

1 1 1 1
0

1 2 3

1 ( ) , ( )
2

1 ( ), ( ) ( ), ( ) , ( )
2

1
2

C

C

C

CS D
C

C

F H t F t dt
i

H t t H t t F t dt
i

I I I
i

τ

τ

τ

τ

τ

 = + Λ 

   = Λ + Λ + Λ   

= + +

∫

∫



 

where
{ }1 1

0

( ), ( )
C

CSI H t t dt
τ

 = Λ ∫ 

{ }2 1
0

( ), ( )
C

DI H t t dt
τ

 = Λ ∫ 

and

[ ]{ }3 1 1
0

, ( )
C

I F t dt
τ

= Λ∫

Let us use the following notation and description,
( ) ( )

( )
( ) ( ) ( )

( )
1 2 1

( )
3 2

( ) ( )
1 4 1 5 1 6 2

                           33

                                             34

   

( )

( )

( ) 1 1 1

C r

r

r r r

ik t i n kN t i
CS m

i n kN t ij
D m

ikN t i n kN t i n kN ti i ij
m m m

H t a e a e T

H t a e T

t a e T a e T a e T

ω ω

ω

ω ω ω

+

+

+ +

= +

=

Λ = − + − + −





( )
( )1 7 1

35

                                                                 36i
mF a T=

where the expressions of the coefficients a1, a2, a3,... are given 
in the appendix. The above integrals I1, I2 and I3 can be evaluate 
as

( )( ) ( )

( )( ) ( )( )
( )( ) ( )( )

1 2 4
0

1 1 1

1 2 5
0

1 2 6 1 2
0

1
,

1

1 ,

C

rC r

C

r rC

C

r rC

i n kN tik t ikN t

i i
m m

i n kN t i n kN tik t

i n kN t i n kN tik t i ij
m m

a e a e a e dt
I T T

a e a e a e dt

a e a e a e dt T T

τ
ωω ω

τ
ω ωω

τ
ω ωω

+

+ +

+ +

 
+ − + 

  = +  
 + − 
 

 + −  

∫

∫

∫
. 

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(37)
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( ) ( )

( ) ( )( )
( ) ( )( )

3 4
0

2 2 1

3 5
0

3 6 2 2
0

1
,

1

1 ,

C

r r

C

r r

C

r r

i n kN t ikN t

ij i
m m

i n kN t i n kN t

i n kN t i n kN t ij ij
m m

a e a e dt
I T T

a e a e dt

a e a e dt T T

τ
ω ω

τ
ω ω

τ
ω ω

+

+ +

+ +

 
− + 

  = +  
 − 
 

 −  

∫

∫

∫

( )

( )( )
( )( )

10 4
0

3 1 1

10 5
0

10 6 1 2
0

1
,

1

1 ,

C

r

C

r

C

r

ikN t

i i
m m

i n kN t

i n kN t i ij
m m

a a e dt
I T T

a a e dt

a a e dt T T

τ
ω

τ
ω

τ
ω

+

+

 
− + 

  = +  
 − 
 

 −  

∫

∫

∫

As discussed above, obtaining the FME terms will allow 
calculating the propagators with the 0th-and 1rst - order average 
Hamiltonians,

{ }(0) (1)
( ) exp ( ) ...FME FMEC CU i H Hτ τ≈ − + +

The basic objective of decoupling methods is to produce 
an effective Hamiltonian that is exclusively influenced by the 
isotropic chemical shift interaction. The decoupling techniques 
have been described originally by the average Hamiltonian 
method [4]. In this light, the Lee-Goldburg pulse eliminates 
the dipolar interaction to zeroth order [31] and the FSLG 
to first order [44] in AHT. These methods were studied with 
the assumption of static conditions and only recently that the 
inclusion of magic-angle spinning during the experiment yield 
the theoretical treatment with a bimodal Floquet theory [33,34]. 
Spin Physics

It is important to mention that the physics of a single-particle 
system is different from the one of a spin ensemble. The ambiguity 
arises because of the adoption of simple matrix representation 
like Pauli or equivalent representation for operator in describing 
the spin system in both synopsis. In principle, for a many-body 
system, one would have to arrogate a rank-n spin tensor or a 
2n-th dimensional matrix representation. But, this is unwieldy 
as the individual spin packets are identical and assumed to be 
non-interacting with other spin packets, i.e. the off-diagonal 
elements in the giant matrix representation are zero. Hence, 
it is possible to block diagonalize the giant matrix, which is 
sufficient to use the simple Pauli matrices along with density 
operator to describe the entire spin ensemble. One important 
ambivalence in the theory of solid-state NMR is that the act of 
measurement causes the spin state to collapse to the eigenstate 
of the measurement operator, i.e. the FID cannot be recorded 
continuously, and quadrature detection is not possible. The flaw 
lies in the fact that the previous statement is only applicable 
to the case of single particle, while solid-state NMR is dealing 
with a spin ensemble [45].

Appendix
A1.    The average Hamiltonian and the propagator of the 
FME

Starting with the Schrodinger Equation, and introducing the 

expansions [46-50]. 
( ) ( )n

n
t tΛ = Λ∑

and

n
n

F F=∑

the FME expansion can be summarized as

( )

( )

0

0

                                43

              44

1 ( ) ,

( ) (0) ( )

c

n n

t

n n n n

F G u du
c

t G u du tF

τ

τ
=

Λ = Λ + −

∫

∫

The first functions Gn (t) are defined as

1 1

1

1

2

3 2 2 1 1 1  

( ) ( )

( ) [ ( )
2

( ) [ ( ) ( [ [ ( )
2 2 1

  , ( )]

  , )]  , ( )]  ]
2

( ),

G t H t
iG t H t

i i i

F t

F tt F tG H t FHt t

=

= −

= − − Λ

+ Λ

+ Λ − Λ −

 τc is the period of the modulation such as
Λn (τc) = Λn (0)
H (τc  + t) = H(t)
A much better choice is given by the general rule

0
( ) 0

c

n u du
τ
Λ =∫

The second order, F2, can be written in its general form as

2 1 10 0 0

12 ( ) [ ( ), ( )] [ 1, ( )]
2 2 2

c c ci iF G u du H u u du F u du
c c

τ τ τ

τ τ
= = − Λ − Λ∫ ∫ ∫

The second term cancels, thus yielding

2 10
[ ( ), ( )]

2
ciF H u u du

c
τ

τ
= − Λ∫

Introducing,

( ) im t
mm

H t H e ω=∑
with

2
c

πω τ=

we obtained the well know results [28,29]
F1 = H0

1 0 0
0 0

( ) 1(0)
t tim t im tm

m
m m

HA t H e dt e
im

ω ω

ω≠ ≠

= Λ + =∑ ∑∫ ∫

2
0

[ , ]1
2

m m

m

H HF
mω

−

≠

= ∑

whereas the choice
Λn(0) = 0
gives the Magnus expansion

1 0
0

( ) ( 1)im t im tm
m

m

Ht H e dt e
im

τ ω ω

ω≠

Λ = = −∑ ∑∫

0
2

0 0

[ , ] [ , ]1
2

m m m

m m

H H H HF
m mω ω

−

≠ ≠

= +∑ ∑

(41)

(38)

(39)

(40)

(42)

(45)

(46)

(47)

(48)
(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)
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