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Introduction
For predictive control, the research mainly 

focuses on robustness. When there are 
requirements for stability performance, stability 
performance analysis is also the main aspect 
of research. Industrial production has low 
requirements for modeling, but the requirements 
for control are not reduced [1]. Therefore, 
in the case of modeling error, the analysis of 
robust performance also needs to be studied. In 
addition, the research of tracking performance 
is the optimization of process dynamic response, 
and the requirement of anti-interference 
performance is the requirement of system 
stability. In the study of robustness and stability 
is not deep enough, in the study of stability 
when the model parameters are unknown, the 
model and object can be perfectly matched, and 
in the optimization analysis of stability, there 
are not many successful research results. There 
are also many successful cases of predictive 
control technology in industrial production, 
such as predictive control of chemical industry, 
trajectory guidance of aircraft, predictive 
control of industrial raw material level, which 
show the application of predictive control in 

practice, and make the system get better effect 
than traditional control, which not only improves 
the control effect, but also improves the efficiency, 
and reduces the waste of raw materials, These are 
not only single variable single output systems, but 
also nonlinear multivariable systems. These new 
prediction systems have been widely used [2].

The research on nonlinear system is not 
enough, but the chemical industry, machine 
control and other aspects still have higher 
requirements for nonlinear system. In the 
future, the requirements for control accuracy 
and variables will be increasing. Therefore, the 
research on nonlinear multivariable system is very 
important for control, Therefore, the research of 
nonlinear predictive control technology will be 
a very important direction in the field of control. 
At present, it is mainly aimed at some special 
mathematical models, such as step response, 
impulse response and so on. There is no general 
nonlinear predictive control method [3]. Model 
predictive control is a kind of optimal control 
strategy based on mathematical model, which can 
add feedback correction closed loop. It is widely 
used in chemical industry.
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Abstract
Predictive control is a kind of time-domain control method which can display and deal with the control 
problems of constrained nonlinear systems. It is a new type of computer control algorithm developed 
in recent years. In the investigation report issued by the International Federation of automatic control in 
April 19, PID control, system identification, estimation and predictive control after filtering are listed as 
the most important control technologies, and are considered as the most influential control methods in 
the future. The inherent robustness of predictive control solves the problem that has puzzled the control 
theory field for nearly a decade. As soon as it appears, it has been paid attention by the engineering circles 
at home and abroad, and has been widely and successfully applied in many industrial departments. The 
current research interests are predictive control, lupon control and the application of predictive control 
and robust control in electromechanical systems. In the actual industrial production, there is no need for 
a particularly fine mathematical model, which requires a method that can achieve high quality control 
effect while the model accuracy is not high First of all, mathematical modelling is needed. The function 
of prediction model is to predict and control the future output of the system by using the historical 
information of the controlled object and the assumed future input. Then the optimization algorithm is 
used for rolling optimization, and the predictive control adopts the finite time domain optimization, 
which is a kind of repeated online optimization. Last, By detecting the real-time state or output of the 
current system, the feedback information is used to make the next prediction and optimization closer 
to the reality before optimizing the control. To avoid the disturbance and system mismatch and other 
uncertainties, to compensate for the impact of this uncertainty.
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This paper mainly establishes the mathematical model of step 
response, which does not need the specific parameters of the control 
object, but needs the state variables and past input and output 
parameters of the object, Without the complex mathematical analysis 
of system identification, the optimal control of the system can be 
carried out, so as to effectively overcome the uncertainty interference 
and error of the system, so as to achieve the specific requirements. 
And model predictive control is suitable for multivariable systems 
because it does not need decoupling, and can directly con- sider 
various constraints [4]. In the process industry, MPC becomes an 
algorithm to deal with complex multivariable constraint problems, 
which is an essential control technology. For more than ten years, 
as a new control method, predictive control has achieved successful 
application examples with continuous improvement of algorithm 
and theory [5]. At present, predictive control has developed into a 
variety of new predictive control technologies which can be applied 
to nonlinear variable and multivariable, and has been successfully 
applied in various fields, The predictive control of reentry guidance 
of aerospace vehicle, nonlinear continuous predictive control 
of robot, multivariable coordinated predictive control of mixed 
constraint process [6].

Multi model generalized predictive control of liquid level system 
and so on all show the advantages of predictive control algorithm 
in practical application, which makes the system get good 
improvement, saves energy and improves efficiency. It also brings 
huge profits to the enterprise [7]. The development of predictive 
control is closely related to practical application. At present, 
qualitative research is more than quantitative research, especially 
for the analysis of stability and robustness; it is difficult to have the 
conclusion of relevant analytical relationship [8]. Furthermore, 
there is no general principle on how to solve the relationship 
between parameter design and systematisms, breaking through 
the bottleneck of quantitative analysis is still a research direction 
in the future [9]. At present, most of the related re- search is linear 
predictive control, but the research of non- linear predictive control 
is less. Because the actual industrial process is mostly nonlinear 
system, the scientific predictive control strategy should be better 
than linear predictive control. Therefore, the predictive control of 
nonlinear system is very important, because rolling optimization 
and feedback correction are based on it [10].

At present, it is mainly for some special models, and there is no 
general nonlinear predictive control method [11]. Therefore, the 
theory and application of nonlinear predictive control will be an 
important direction of predictive control in the future[12].In recent 
years, the research of predictive control theory mainly analyzes the 
robustness and stability of the existing predictive control algorithms, 
and puts forward some new algorithms based on the analysis[13]. 
When there are some modeling errors in robustness analysis, 
scholars have conducted in-depth research and discus- sion, but 
there are too few research results in quantitative description of 
substantive areas [14].

There are still some problems about the factors affecting the 
predictive control, especially the influence of the design parameters 
on the robust stability.
CSTR mechanism model and simulation
Methods and characteristics of process modelling

Process modeling mainly includes organic modeling, testing 
modeling and hybrid modeling. In the continuous stirred 
reactor model, we mainly use mechanism modeling. The 
mathematical model will be analyzed and studied in depth to 
facilitate the simulation and get the corresponding conclusions, 
and provide more accurate data and guidance for the actual 

production. Learning the basic principles of predictive control, 
MPC based on step response model, mainly includes the 
research of predictive control algorithm (dynamic matrix control 
algorithm), parameter design of single variable predictive control 
system (dynamic matrix control algorithm), parameter design 
of multivariable predictive control algorithm, and variable 
predictive control algorithm (dynamic matrix control algorithm) 
Decoupling of multivariable predictive control algorithm, 
generalized MPC, GPC. This paper analyzes the main problems 
of predictive controller algorithm performance to be solved 
under the influence of different parameters, how to design some 
parameters of a variable predictive control algorithm, how to 
decouple the multivariable measurement and control algorithm, 
and uses MATLAB to simulate the CSTR mechanism model, 
and verifies the control effect of the algorithm according to the 
simulation results.

The steps of mechanism modeling are shown in figure 1.
1.	 Define the research system, understand the process 

conditions and mechanism, understand the input and 
output of the state and various process parameters.

2.	 The assumption conditions are defined, the unimportant 
parameters are ignored, and the values of small changes 

system and so on all show the advantages of predictive con-
trol algorithm in practical application, which makes the sys-
tem get good improvement, saves energy and improves effi-
ciency. It also brings huge profits to the enterprise[7]. The
development of predictive control is closely related to practi-
cal application. At present, qualitative research is more than
quantitative research, especially for the analysis of stabil-
ity and robustness, it is difficult to have the conclusion of
relevant analytical relationship[8]. Furthermore, there is no
general principle on how to solve the relationship between
parameter design and systematicness, Breaking through the
bottleneck of quantitative analysis is still a research direc-
tion in the future[9]. At present, most of the related re-
search is linear predictive control, but the research of non-
linear predictive control is less. Because the actual industrial
process is mostly nonlinear system, the scientific predictive
control strategy should be better than linear predictive con-
trol. Therefore, the predictive control of nonlinear system is
very important, because rolling optimization and feedback
correction are based on it[10].

At present, it is mainly for some special models, and
there is no general nonlinear predictive control method[11].
Therefore, the theory and application of nonlinear predic-
tive control will be an important direction of predictive con-
trol in the future[12].In recent years, the research of pre-
dictive control theory mainly analyzes the robustness and
stability of the existing predictive control algorithms, and
puts forward some new algorithms based on the analysis[13].
When there are some modeling errors in robustness anal-
ysis,scholars have conducted in-depth research and discus-
sion, but there are too few research results in quantitative
description of substantive areas[14].
There are still some problems about the factors affecting

the predictive control, especially the influence of the design
parameters on the robust stability.

2 CSTR mechanism model and simulation

2.1 Methods and characteristics of process modeling
Process modeling mainly includes organic modeling, test-

ing modeling and hybrid modeling. In the continuous stirred
reactor model, we mainly use mechanism modeling. The
mathematical model will be analyzed and studied in depth to
facilitate the simulation and get the corresponding conclu-
sions, and provide more accurate data and guidance for the
actual production. Learning the basic principles of predic-
tive control, MPC based on step response model, mainly in-
cludes the research of predictive control algorithm (dynamic
matrix control algorithm), parameter design of single vari-
able predictive control system (dynamic matrix control al-
gorithm), parameter design of multivariable predictive con-
trol algorithm, and variable predictive control algorithm (dy-
namic matrix control algorithm) Decoupling of multivariable
predictive control algorithm, generalized MPC, GPC. This
paper analyzes the main problems of predictive controller
algorithm performance to be solved under the influence of
different parameters, how to design some parameters of a
variable predictive control algorithm, how to decouple the
multivariable measurement and control algorithm, and uses
MATLAB to simulate the CSTR mechanismmodel, and ver-
ifies the control effect of the algorithm according to the sim-

ulation results.

2.2 steps of mechanism modeling
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Fig. 1: Steps of mechanism modeling

The steps of mechanism modeling are shown in fig.1.
1) Define the research system, understand the process con-

ditions and mechanism, understand the input and output
of the state and various process parameters.

2) The assumption conditions are defined, the unimportant
parameters are ignored, and the values of small changes
are fixed constants.

3) In this paper, the mechanismmodeling is mainly based on
material conservation, energy conservation and various
chemical and physical equilibrium relations to write the
basic reaction equation.

4) Finally, the model needs to be tested, and computer sim-
ulation is needed to compare the simulation data with the
actual data to verify whether the model is in line with the
actual situation.

2.3 Mechanism modeling of continuous stirred reactor
(CSTR)

Continuous stirred reactor is a common reaction device in
chemical industry, as shown in fig.2. Given conditions: the
input liquid is single component A, and its concentration is
CAi, the flow is Fi. The temperature is Ti. At the outlet, the
concentration of component A is CA. The concentration of
component B is CB. The output flow is Fo, temperature T .
A cooling jacket is installed outside the reactor, and the

Figure 1: Steps of mechanism modeling.
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are fixed constants.
3.	 In this paper, the mechanism modeling is mainly based on 

material conservation, energy conservation and various 
chemical and physical equilibrium relations to write the 
basic reaction equation.

4.	 Finally, the model needs to be tested, and computer 
simulation is needed to compare the simulation data with 
the actual data to verify whether the model is in line with 
the actual situation.

Mechanism modeling of continuous stirred reactor (CSTR)
Continuous stirred reactor is a common reaction device in 

chemical industry, as shown in figure 2. Given conditions: the 
input liquid is single component A, and its concentration is CAi, 
the flow is Fi. The temperature is Ti. At the outlet, the concentration 
of component A is CA. The concentration of component B is CB. 
The output flow is Fo, temperature T . A cooling jacket is installed 
outside the reactor, and the coolant flow inside is Fc. The input 
temperature is Tci and the output temperature is Tc.

According to the conservation equation of the material, it is 
concluded that: 

Simulation and steady point analysis
Figure 3 horizontal axis time, the first ordinate is the 

concentration of component A, and the second ordinate is the 
temperature of the reactor. It can be seen from the figure that 
the peak time of component A is 0.3 hours, the concentration 
is 0.06 mol/m3,the steady-state concentration is 0.02 mol/m3, at 
0.7 hours, the overshoot is 200%, and the reactor temperature 
reaches steady-state at 0.6 hours, that is, the regulation time is 
about 0.6 hours.
Model prediction algorithm based on step response
Brief introduction of MPC

If r is  the  set  value and yˆ is  the  predicted value of  the model, 
the sum of the square of the residual error between the set value 
and the predicted value at k + j is obtained, and the cumulative 
deviation in the prediction time domain is obtained The final 
objective function is the sum of u-weighted coefficients.
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Where NP is the prediction time domain length, which can be 
written as P , NC is the control time domain length, which can be 
written as M . The above formula is written as a matrix.
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Step response model
When the jacket temperature Tj is increased by 10% under 

the stable condition, the step response curve of the model to the 
jacket temperature changing with time is obtained. The sampling 
time is set to one minute. In order to ensure the stable state of the 
system, that is, 50 sampling points. The step response is shown 
in figure 4.
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2.4 Simulation and steady point analysis
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Fig. 3: Dynamic response curve of CSTR from initial state
to steady state

3 Model prediction algorithm based on step re-
sponse

3.1 Brief introduction of MPC
If r is the set value and ŷ is the predicted value of the

model, the sum of the square of the residual error between
the set value and the predicted value at k+ j is obtained, and
the cumulative deviation in the prediction time domain is ob-
tained The final objective function is the sum of u-weighted
coefficients.
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Where NP is the prediction time domain length, which
can be written as P , NC is the control time domain length,
which can be written asM . The above formula is written as
a matrix.
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3.2 step response model
When the jacket temperatureTj is increased by 10% under

the stable condition, the step response curve of the model to
the jacket temperature changing with time is obtained. The
sampling time is set to one minute. In order to ensure the
stable state of the system, that is, 50 sampling points. The
step response is shown in fig.4.
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Take s = ∆y/∆u to get the step response model.

s =
[

s1 s2 · · · sN
]T (4)

3.3 Unconstrained MPC and optimization formula
Step response model predictive control (DMC), also

known as dynamic matrix control, predicts the future re-
sponse of the system through the existing information, the
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3 Model prediction algorithm based on step re-
sponse

3.1 Brief introduction of MPC
If r is the set value and ŷ is the predicted value of the

model, the sum of the square of the residual error between
the set value and the predicted value at k+ j is obtained, and
the cumulative deviation in the prediction time domain is ob-
tained The final objective function is the sum of u-weighted
coefficients.
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Where NP is the prediction time domain length, which
can be written as P , NC is the control time domain length,
which can be written asM . The above formula is written as
a matrix.

min
∆U(k) = min{||R(k)− (̂Y )||2 + ||∆U(k)||2W } (3)

3.2 step response model
When the jacket temperatureTj is increased by 10% under

the stable condition, the step response curve of the model to
the jacket temperature changing with time is obtained. The
sampling time is set to one minute. In order to ensure the
stable state of the system, that is, 50 sampling points. The
step response is shown in fig.4.
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Take s = ∆y/∆u to get the step response model.

s =
[

s1 s2 · · · sN
]T (4)

3.3 Unconstrained MPC and optimization formula
Step response model predictive control (DMC), also

known as dynamic matrix control, predicts the future re-
sponse of the system through the existing information, the

Figure 3: Dynamic response curve of CSTR from initial state to 
steady state
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Take s = y/ u   to get the step response model.
2

1 2[      . . .  ]NS S S S=           (4)

Unconstrained MPC and optimization formula
Step response model predictive control (DMC), also known 

as dynamic matrix control, predicts the future re- sponse of the 
system through the existing information, the past input and 
output of the system and the current state and input of the system. 
It can be predicted by the current initial value Yˆ0(k). And M  
incremental sequences ∆U (k) is multiplied by the dynamic 
matrix a composed of step response sequence.

0( ) (k)  A U(kˆ )Ŷ k Y= +        (5)

The increment after sN is 0. Then, the predicted output values 
from k + 1 to k + p can be obtained:

1 1
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The future time and past time in the predicted output value can 

be classified and written in the form of matrix

f p p N p
ˆ  (k) = S U(k) + S U (k) + s U (k)Y  

      (7)

Introducing feedback correction
In order to improve the accuracy of the system and reduce the 

control error caused by nonlinearity and interference, feedback 
correction is introduced. Feedback correction is a kind of closed-
loop correction, which makes then output of the system have a 
direct impact on the system and can increase the accuracy of the 
system. When the output of the system deviates, it can weaken 
or offset this part of the error in time. The error here refers to the 
difference between the measured value and the expected value. 
In model predictive control, it is the error between the actual 
measured value and the model predicted value:

ˆd(k) = y(k)  (k)y−       (8)

The actual value in the future is unknown. The error with the 
predicted value of the model cannot be defined. The current error 
can be brought into the future error, and the error from k +1 to 
k +p is equal to the error at k time. After error correction, the 
predicted value can be written as:

cˆ ˆ(k + j) = (k + j) + d(k + j)y y      (9)

Combined with eq. ??, we can get:

T
f f

T

T T T
f f f
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+[ U(k)] W[ U(k)]

= E E  2 U S  E + U [S S  + W] UT T−

 

 

         (10)

In order to obtain the analytic solution of the optimal control, 
we can take the minimization function J(k) pair The first 
derivative of  ΔU. If you set it to 0,dJ

d U
=

  
you can get it ΔU; The 

analytic solution of the optimal control vector of u is as follows:
-1

f f fU*(k) = [S S  + W] S E(k) = KE(k)T T
      (11)

Take the first term, the optimal control variable of time ΔU(k) 
is used as the predictive control.
Constrained MPC

In real production, the control quantity of input quantity will be 
limited to a certain extent, so the optimization problem of DMC 
after constraint variables should also be considered, including the 
constraint of control variable U, the constraint of control variable 
change Δu, and the constraint of model prediction value ˆyc.
Restriction of control quantity

Set the constraints of control variables and the change amount 
of control variables, that is, set their maximum and minimum 
values:

min k+j max

min k+j max

u  u  u
u  u    u

≤ ≤

≤ ≤         (12)

By analogy, uK to uK+m−1 in eq. 12 can be expressed by Δu, and 
written as matrix as follows:

coolant flow inside is Fc. The input temperature is Tci and
the output temperature is Tc.
According to the conservation equation of the material, it

is concluded that:














dV
dt

= Fi − Fo

dCA
dt

= Fi
V

(CAi − CA)− k0e
−

Ea
RT CA

dT
dt

= Fi
V

(Ti − T )− �H
cpρ

k0e
−

Ea
RT CA −

UA
cpρV

(T − Tc)

(1)

Fc,Tc

V

F T CA BC

Product

Fc ，Tci

Coolant
Reactant

Fi T i C
Ai

Fig. 2: Continuous stirred reactor

2.4 Simulation and steady point analysis
fig.3 horizontal axis time, the first ordinate is the concen-

tration of component A, and the second ordinate is the tem-
perature of the reactor. It can be seen from the figure that the
peak time of component A is 0.3 hours, the concentration is
0.06 mol/m3,the steady-state concentration is 0.02 mol/m3,
at 0.7 hours, the overshoot is 200%, and the reactor temper-
ature reaches steady-state at 0.6 hours, that is, the regulation
time is about 0.6 hours.
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Fig. 3: Dynamic response curve of CSTR from initial state
to steady state

3 Model prediction algorithm based on step re-
sponse

3.1 Brief introduction of MPC
If r is the set value and ŷ is the predicted value of the

model, the sum of the square of the residual error between
the set value and the predicted value at k+ j is obtained, and
the cumulative deviation in the prediction time domain is ob-
tained The final objective function is the sum of u-weighted
coefficients.

min
∆u(k)···∆u(k+Nc)−1J = min{

Np
∑

j=1

(r(k + j)− ŷ(k + j))2

+

Nc
∑

i=1

wj(∆u(k + j − 1))2} (2)

Where NP is the prediction time domain length, which
can be written as P , NC is the control time domain length,
which can be written asM . The above formula is written as
a matrix.

min
∆U(k) = min{||R(k)− (̂Y )||2 + ||∆U(k)||2W } (3)

3.2 step response model
When the jacket temperatureTj is increased by 10% under

the stable condition, the step response curve of the model to
the jacket temperature changing with time is obtained. The
sampling time is set to one minute. In order to ensure the
stable state of the system, that is, 50 sampling points. The
step response is shown in fig.4.
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Fig. 4: Step response curve of CSTR

Take s = ∆y/∆u to get the step response model.

s =
[

s1 s2 · · · sN
]T (4)

3.3 Unconstrained MPC and optimization formula
Step response model predictive control (DMC), also

known as dynamic matrix control, predicts the future re-
sponse of the system through the existing information, the

Figure 4: Step response curve of CSTR
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


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In summary, we can get the following formula:

1

1

U(k)    
U(k)    

ex k min

ex max k

I U U
I U U

−

−

− ≤ −
 ≤ −





    (15)

Constraints on predicted values
Set the maximum and minimum value of the predicted value 

of the model value:

min k+j maxy y  yc≤ ≤
    (16)

From equations 7 and 9, the predicted values of the model are 
as follows:

min f p p p N p maxY S U (k)+S U k+s U (k)+D(K) Y≤ ≤ 

(17)

The past moment and error are abbreviated as:

p p N pF(k) = S U k + s U (k) + D(K)

    (18)

It can be converted into a constraint form of k-time control 
increment ΔU:

f min

f max

-S U(k) F(k) Y
S U(k) Y  F(k)

≤ −
−≤



      (19)

The optimization function J is written as quadratic form, and 
the above constraints are added, namely, DMC algorithm with 
constraints, also known as QDMC algorithm form:

( ) ( ) ( )

min m

T

a

T

x 

1k [ U(k)] H[ U(k)] [ C(k)

s.t.

]  [ U(k)]
2

A U(k) B
U U(k) U

min min
J

u k u k
≤

≤

=

≤

+



 

  

 

                                                                                               (20)
Matlab simulation
Unconstrained DMC simulation

Using the model instead of the actual equipment set the 
prediction time domain length P, control the time domain length 
m and weight W to 10, 2 and 1 respectively, and get the simulation 
results as shown in figure 5.

The past moment and error are abbreviated as:

F (k) = Sp∆Upk + sNUp(k) +D(K) (18)

It can be converted into a constraint form of k-time control
increment ∆U :

−Sf∆U(k) ≤ F (k)− Ymin

Sf∆U(k) ≤ Ymax − F (k)
(19)

The optimization functionJ is written as quadratic form, and
the above constraints are added, namely, DMC algorithm
with constraints, also known as QDMC algorithm form:/’//

min
∆U(k)J(k) =

min
∆U(k)

1

2
[∆U(k)]TH [∆U(k)] + [C(k)]T [∆U(k)]

s.t.A∆U(k) ≤ B

∆Umin ≤ ∆U(k) ≤ ∆Umax

(20)

4 Matlab simulation
4.1 Unconstrained DMC simulation

Using the model instead of the actual equipment, set the
prediction time domain length P , control the time domain
length m and weight W to 10, 2 and 1 respectively, and get
the simulation results as shown in fig.5.
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Fig. 5: Unconstrained step response curve

It can be seen from the figure above that the overshoot of
the system response curve is generated, and it is stable when
the abscissa is 40, that is, the sampling time is 40. In the pre-
dictive control, the sampling theorem should conform to the
Shannon sampling theorem satisfied by the control system,
so that the value of the sampling frequency should be greater
than twice the maximum frequency of the sampling signal.
For the model parameters, the upper limit of prediction time
domain P can be selected according to the sampling period
T . when the sampling time is small, the length of predic-
tion time domain P and the length of control time domain m
need to be increased.
If we only consider the influence of P and m on the system,
the prediction time domain P mainly affects the rapidity and
stability, while the control time domain m mainly affects the

dynamic performance of the system. When P is small, the
step size of the system is small, and the fast performance is
good, but the system has poor anti-interference ability and
poor stability; When P is large, the stability is good, but the
system reaction is slow. The magnitude of the control time
domain m should be smaller than the prediction time domain
and larger than the non minimum phase response of the sys-
tem. When adding noise or disturbance into the program, ob-
serve the simulation results as shown in fig.6. It can be seen
that the prediction curve basically coincides with the output
curve, which shows that the system has strong suppression
of interference. When there is interference, the algorithm
can also well predict the input and output of the system, and
then quickly control the system.
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Fig. 6: Unconstrained step response curve with disturbance

4.2 QDMC simulation
Constraint control is applied to the step response model,

where the maximum value of input is limited. Set the max-
imum value of input UMax = 30, as shown in fig.7, com-
pared with unconstrained input, the maximum value of un-
constrained input is limited below 30, which suppresses ex-
cessive disturbance at the input level.
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Fig. 7: Input maximum suppression curve

According to the QDMC response curve in fig.8, com-
pared with the unconstrained system, the algorithm can ef-
fectively suppress the overshoot and improve the speed of
the system.

Figure 5: Unconstrained step response curve

It can be seen from the figure above that the overshoot of the 
system response curve is generated, and it is stable when the abscissa 
is 40, that is, the sampling time is 40. In the predictive control, 
the sampling theorem should conform to the Shannon sampling 
theorem satisfied by the control system, so that the value of the 
sampling frequency should be greater than twice the maximum 
frequency of the sampling signal. For the model parameters, the 
upper limit of prediction time domain P can be selected according 
to the sampling period T . When the sampling time is small, the 
length of prediction time domain P and the length of control time 
domain m need to be increased. If we only consider the influence of 
P and m on the system, the prediction time domain P mainly affects 
the rapidity and stability, while the control time domain m mainly 
affects the dynamic performance of the system. When P is small, the 
step size of the system is small, and the fast performance is good, 
but the system has poor anti-interference ability and poor stability; 
When P is large, the stability is good, but the system reaction is slow. 
The magnitude of the control time domain m should be smaller 
than the prediction time domain and larger than the non-minimum 
phase response of the system. When adding noise or disturbance 
into the program, observe the simulation results as shown in figure 
6. It can be seen that the prediction curve basically coincides with the 
output curve, which shows that the system has strong suppression 
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The past moment and error are abbreviated as:

F (k) = Sp∆Upk + sNUp(k) +D(K) (18)

It can be converted into a constraint form of k-time control
increment ∆U :

−Sf∆U(k) ≤ F (k)− Ymin

Sf∆U(k) ≤ Ymax − F (k)
(19)

The optimization functionJ is written as quadratic form, and
the above constraints are added, namely, DMC algorithm
with constraints, also known as QDMC algorithm form:/’//

min
∆U(k)J(k) =

min
∆U(k)

1

2
[∆U(k)]TH [∆U(k)] + [C(k)]T [∆U(k)]

s.t.A∆U(k) ≤ B

∆Umin ≤ ∆U(k) ≤ ∆Umax

(20)

4 Matlab simulation
4.1 Unconstrained DMC simulation

Using the model instead of the actual equipment, set the
prediction time domain length P , control the time domain
length m and weight W to 10, 2 and 1 respectively, and get
the simulation results as shown in fig.5.
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It can be seen from the figure above that the overshoot of
the system response curve is generated, and it is stable when
the abscissa is 40, that is, the sampling time is 40. In the pre-
dictive control, the sampling theorem should conform to the
Shannon sampling theorem satisfied by the control system,
so that the value of the sampling frequency should be greater
than twice the maximum frequency of the sampling signal.
For the model parameters, the upper limit of prediction time
domain P can be selected according to the sampling period
T . when the sampling time is small, the length of predic-
tion time domain P and the length of control time domain m
need to be increased.
If we only consider the influence of P and m on the system,
the prediction time domain P mainly affects the rapidity and
stability, while the control time domain m mainly affects the

dynamic performance of the system. When P is small, the
step size of the system is small, and the fast performance is
good, but the system has poor anti-interference ability and
poor stability; When P is large, the stability is good, but the
system reaction is slow. The magnitude of the control time
domain m should be smaller than the prediction time domain
and larger than the non minimum phase response of the sys-
tem. When adding noise or disturbance into the program, ob-
serve the simulation results as shown in fig.6. It can be seen
that the prediction curve basically coincides with the output
curve, which shows that the system has strong suppression
of interference. When there is interference, the algorithm
can also well predict the input and output of the system, and
then quickly control the system.
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4.2 QDMC simulation
Constraint control is applied to the step response model,

where the maximum value of input is limited. Set the max-
imum value of input UMax = 30, as shown in fig.7, com-
pared with unconstrained input, the maximum value of un-
constrained input is limited below 30, which suppresses ex-
cessive disturbance at the input level.
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According to the QDMC response curve in fig.8, com-
pared with the unconstrained system, the algorithm can ef-
fectively suppress the overshoot and improve the speed of
the system.

Figure 6: Unconstrained step response curve with disturbance

The past moment and error are abbreviated as:

F (k) = Sp∆Upk + sNUp(k) +D(K) (18)

It can be converted into a constraint form of k-time control
increment ∆U :

−Sf∆U(k) ≤ F (k)− Ymin

Sf∆U(k) ≤ Ymax − F (k)
(19)

The optimization functionJ is written as quadratic form, and
the above constraints are added, namely, DMC algorithm
with constraints, also known as QDMC algorithm form:/’//

min
∆U(k)J(k) =

min
∆U(k)

1

2
[∆U(k)]TH [∆U(k)] + [C(k)]T [∆U(k)]

s.t.A∆U(k) ≤ B

∆Umin ≤ ∆U(k) ≤ ∆Umax

(20)

4 Matlab simulation
4.1 Unconstrained DMC simulation

Using the model instead of the actual equipment, set the
prediction time domain length P , control the time domain
length m and weight W to 10, 2 and 1 respectively, and get
the simulation results as shown in fig.5.
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It can be seen from the figure above that the overshoot of
the system response curve is generated, and it is stable when
the abscissa is 40, that is, the sampling time is 40. In the pre-
dictive control, the sampling theorem should conform to the
Shannon sampling theorem satisfied by the control system,
so that the value of the sampling frequency should be greater
than twice the maximum frequency of the sampling signal.
For the model parameters, the upper limit of prediction time
domain P can be selected according to the sampling period
T . when the sampling time is small, the length of predic-
tion time domain P and the length of control time domain m
need to be increased.
If we only consider the influence of P and m on the system,
the prediction time domain P mainly affects the rapidity and
stability, while the control time domain m mainly affects the

dynamic performance of the system. When P is small, the
step size of the system is small, and the fast performance is
good, but the system has poor anti-interference ability and
poor stability; When P is large, the stability is good, but the
system reaction is slow. The magnitude of the control time
domain m should be smaller than the prediction time domain
and larger than the non minimum phase response of the sys-
tem. When adding noise or disturbance into the program, ob-
serve the simulation results as shown in fig.6. It can be seen
that the prediction curve basically coincides with the output
curve, which shows that the system has strong suppression
of interference. When there is interference, the algorithm
can also well predict the input and output of the system, and
then quickly control the system.
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4.2 QDMC simulation
Constraint control is applied to the step response model,

where the maximum value of input is limited. Set the max-
imum value of input UMax = 30, as shown in fig.7, com-
pared with unconstrained input, the maximum value of un-
constrained input is limited below 30, which suppresses ex-
cessive disturbance at the input level.
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According to the QDMC response curve in fig.8, com-
pared with the unconstrained system, the algorithm can ef-
fectively suppress the overshoot and improve the speed of
the system.

Figure 7: Input maximum suppression curve

of interference. When there is interference, the algorithm can also 
well predict the input and output of the system, and then quickly 
control the system.
QDMC simulation

Constraint control is applied to the step response model, 
where the maximum value of input is limited. Set the maximum 
value of input UMax = 30, as shown in figure.7, compared with 
unconstrained input, the maximum value of unconstrained input 
is limited below 30, which suppresses excessive disturbance at the 
input level.

According to the QDMC response curve in figure 8, compared 
with the unconstrained system, the algorithm can effectively 
suppress the overshoot and improve the speed of the system.
Conclusions

As a new control algorithm, predictive control does not need 
accurate model structure and parameters, but according to the 
existing knowledge, in the known information, according to the 
requirements of the principle of predictive control, simple modeling, 
and has better control characteristics, so it is widely used in various 
industries, compared with the traditional PID control, The online 
optimization feature of predictive control can always optimize the 
current data online, and is more suitable for the influence of noise 
and interference in industrial production. Compared with PID, 
parameter tuning is more convenient and robust. In the comparison 
between unconstrained MPC and QMPC, it can be seen that the 
step response model prediction algorithm with constraints has 
better suppression of overshoot, can effectively restrain the influence 
of interference on the system, and can more accurately predict the 
future output of the system with constraints, and can effectively 
optimize the control of the changes of the future system.
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Fig. 8: QDMC response curve

5 CONCLUSION

As a new control algorithm, predictive control does not
need accurate model structure and parameters, but according
to the existing knowledge, in the known information, accord-
ing to the requirements of the principle of predictive control,
simple modeling, and has better control characteristics, so it
is widely used in various industries, compared with the tra-
ditional PID control, The online optimization feature of pre-
dictive control can always optimize the current data online,
and is more suitable for the influence of noise and interfer-
ence in industrial production. Compared with PID, param-
eter tuning is more convenient and robust. In the compari-
son between unconstrained MPC and QMPC, it can be seen
that the step response model prediction algorithm with con-
straints has better suppression of overshoot, can effectively
restrain the influence of interference on the system, and can
more accurately predict the future output of the system with
constraints, and can effectively optimize the control of the
changes of the future system.
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