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We read with great interest the paper by 
Beaudoin CA et al. “Are There Hidden 
Genes in DNA/RNA Vaccines?”, reporting 
overlapping sequences between the SARS-
CoV-2 spike (S) glycoprotein and two viral 
genes [1]. If translated, the undesired proteins 
may cause rare, untoward effects, including 
those recorded in Vaccine Adverse Event 
Reporting System (VAERS).

These findings are in line with our own 
research and that of others however, aside 
from overlapping genes (OLGs), the S 
protein also contains overlapping molecular 
structures and signals (heptad repeats, simple 
sequence repeats, calcium calmodulin kinase 
II, and prion-like domains) that can lead to 
VAERS-recorded pathology [2-6].

Overlapping genetic and structural 
information are important to viruses, as they 
maximize the number of translated proteins 
derived from the same genetic information 
[7]. This compact arrangement also allows 
for the emergence of mutations without major 
genetic restructuring [8]. Furthermore, there 
is evidence that such structures also regulate 
gene expression in many viruses [9], including 
coronaviruses [10,11](Figure 1).

Taking the above viral-derived 
complication into account, messenger RNA 
(mRNA) vaccines encode the full-length S 
protein that when expressed on the surface of 
cells, prompts the generation of neutralizing 
antibodies [12]. Thus, both OLGs and 
molecular systems may be translated too, 
contributing to vaccine complications and 
potential adverse effects. 
Messenger RNA vaccines, known 
modifications

To elicit the generation of neutralizing 
antibodies, exogenously administered mRNA 
must be heavily engineered to avoid hydrolysis 
by the extracellular RNAases and detection by 
cytosolic immune sensors [13,14]. Placing the 
nucleic acid backbone into lipid nanoparticles 
(LNPs), hides it from RNAases, while 
codon optimization, replacing uridine with 

N1-methylpseudouridine (m1Ψ), renders the 
vaccine undetectable to sensors [15,16]. Other 
adjustments were made in the untranslated 
regions (UTRs) and polyadenylated (polyA) tail 
to protect and stabilize the vaccine [14,16,17]. 
Another known change, addition of two proline 
residues, maintain the S antigen in prefusion 
conformation to augment immune system 
exposure [18]. Moreover, aside from m1Ψ, 
codon optimization includes increased the CG 
content and possibly G-quadruplex structures 
to enhance translation [6].
Potential unknown changes

Aside from the reported changes, the mRNA 
encoded S antigen may have been engineered 
further to increase efficacy and translation.
Sense codon reassignment?

Pfizer/BioNTech has published the mRNA 
vaccine sequences, allowing scientists and 
clinicians to compare codons with the wild 
type S protein. However, the translated 
peptides remain proprietary therefore, at this 
time, it is not possible to rule out sense codon 
reassignment or introduction of unnatural 
proteins [19]. This is important as genetic code 
expansion and incorporation of immunogenic 
noncanonical amino acids, patented in 2018 
(WO2019193416A1), were evaluated for 
utilization in genetic vaccines [20]. Some 
unnatural amino acids, especially homoarginine, 
was associated with heart disease and sudden 
death therefore, these artificial building blocks 
may in rare occasions directly contribute to 
VAERS-recorded events [21-22].

Sugar coating or not?
It is unknown at this time whether the S 

protein glycans were altered to increase the 
efficacy of the mRNA therapeutics. However, 
vaccine-elicited neutralizing antibodies 
exhibit a distinct glycosylation pattern than 
post-infection antibodies, indicating possible 
manipulation [23-25]. This is significant 
as glycosylation plays a major role in 
cardiovascular and endothelial homeostasis, 
providing a potential link to VAERS-recorded 
events [26,27](Figure 1).
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The DNA mismatch repair factor, MSH3, previously 
associated with trinucleotide repeats, was also found to function 
as a sensor for G-quadruplexes therefore, opposing codon 
optimization [34,35]. This is interesting as a novel study found 
a proprietary, Moderna-owned, reverse MSH3 sequence that 
matches the SARS-CoV-2 furin cleavage site, suggesting an 
OLG [36]. Indeed, to protect the optimized CG content and 
G-quadruplexes, MSH3 may need to be attenuated or inhibited, 
explaining the reason this reverse sequence could have been 
patented (US-9587003-B2).
Heptad repeats

There are two heptad repeats in the S protein of SARS-CoV-2 
that assemble into a six-helix bundle to execute membrane 
fusion [37]. Translation of these structures likely accounts for 
vaccine-induced pathological cell-cell fusion, that could result 
in rare post-vaccination events, such as giant cell myocarditis 
[38,39].
Calcium calmodulin kinase II

Cell-cell fusion can also be promoted by calcium calmodulin 
kinase II (CaMKII), a system detected in the S antigen of the 
SARS-CoV-2 virus [4]. CaMKII may promote post-vaccination 
pathological syncytia, probably accounting for VAERS-reported 
multinucleated giant cells thyroiditis or myocarditis [4,40].
Prion-like domains

The receptor-binding domain (RBD) of the SARS-CoV-2 
virus contains a prion motif that could be translated, leading 
to pathology (5). Indeed, post-vaccination Creutzfeldt-Jakob 
disease (CJD) was reported by two separate studies, indicating 
that the prion motif may get translated [41,42].
In summary

OLG and overlapping molecular structures are common 
occurrence in viruses and contribute to a number of biological 
processes. However, such overlapping information may also be 
translated with the vaccine mRNA, thus inadvertently increasing 
the odds of pathology. An mRNA vaccine expressing only the 
RBD may lower the susceptibility for adverse effects.
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Figure 1. The overlapping molecular structures and signals in the S 
protein of SARS-CoV-2 virus. Glycosylation is a viral strategy for suc-

cessfully exploiting host translational machinery.
Vaccination with SARS-CoV-2 S protein lacking glycan shields elicits 
enhanced responses therefore, glycosylation may have been altered in 
mRNA vaccines. RBD (receptor binding domain), CaMKII (calcium 

calmodulin kinase II), SSR(simple sequence repeats).
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