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The Pfizer and Moderna COVID-19 
vaccines are composed of lipid nanoparticles 
(LNP) containing a modified messenger RNA 
(mRNA) that encodes for the Spike S1 protein 
[1-3]. The LNP transfection likely involves 
particle engulfment by the host immune cells 
due to their resemblance to apoptotic bodies, 
vesicles with externalized phosphatidylserine 
(ePS). As the LNPs are decorated with PS-
like ionizable phospholipids, including 
1,2-distearoyl-sn-glycero-3-phosphocholine 
(DSPC), they encourage human phagocytes 
into internalizing them [4-6].  

The LNP technology, to put it simply, 
mimics viral envelopes with ePS, a universal 
“eat me” signal, that directs immune cells to 
engulf the particle [7,8]. However, as ePS 
is also a potential “fuse me” signal, LNP 
may inadvertently facilitate the formation of 
pathological syncytia [9,10].  Moreover, ePS 
may activate a disintegrin and metalloprotease 
10 and 17 (ADAM 10)(ADAM 17), master 
regulators of syncytia formation, contributing 
further to the unintended consequence of cell-
cell fusion [11,12]. 

LNP-incorporated mRNA comprises an 
enormous technological success that goes 
beyond vaccines, opening new avenues for 
developing “smart” therapeutics that can be 
delivered with pinpoint precision to specific 
subcellular structures [13]. The development 
of such therapeutics is anticipated to redefine 
clinical pathways, including for non-
communicable diseases. However, are these 
therapies ready for worldwide application in 
their present molecular form? 

The question has been asked before, often 
in relation to the potential toxicity of lipid 
formulations used in the past, especially as 
part of the delivering cancer therapeutics 
[14,15]. However, in the following sections, 

we take a closer look at a novel perspective, 
namely the mRNA vaccines’ structure and 
composition and at their unintended biological 
consequences derived from pathological cell-
cell fusion.
Messenger RNA vaccines, an overview

To elicit the formation of neutralizing 
antibodies, exogenously administered mRNA 
must avoid two key obstacles:  hydrolysis by 
extracellular RNAases and recognition by 
cytosolic innate immune sensors, including 
toll-like receptors (TLRs) and retinoic acid-
inducible gene I (RIG-I) protein [16,17]. 
The former is accomplished by hiding the 
nucleic acid backbone into LNPs, while the 
latter by attaching nucleobases, such as N1-
methylpseudouridine (m1Ψ) to the mRNA 
[18,19](Figure 1). The coding region of the 
mRNA is flanked by two untranslated regions 
(UTRs) followed by a polyadenylated (polyA) 
tail at 3' and a cap at 5’ for further structural 
stabilization and protection (Figure 1) 
[17,19,20].

As mRNA vaccines are based on pre-
fusion epitopes, the fusion pathology may 
be undeterred, allowing viral infection by 
syncytia formation to continue unabated 
[3,16]. This is significant, as it could account 
for the reoccurrence of COVID-19 symptoms 
in fully vaccinated individuals [3,21,22]. In 
addition, this may explain the rare post-
vaccination events associated with cell-cell 
fusion, including giant cell myocarditis, giant 
cell arteritis, and Creutzfeldt-Jakob Disease, 
recorded in Vaccine Adverse Event Reporting 
System (VAERS) database (please see section 
“Vaccine core: the synthetic mRNA”) [23-27]. 
What is cell-cell fusion?

Cell-cell fusion is a physiological or 
pathological process in which one or more 
adjacent cells merge their plasma membranes, 
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cytoplasm, nuclei, and intracellular organelles, generating 
multinucleated syncytia often with novel, emerging properties 
[28]. Under normal circumstances, cell-cell fusion occurs during 
fertilization and placentation as well as during the formation of 
myoblasts and osteoclasts [29]. Likewise, in the central nervous 
system (CNS), astrocytes engender physiological syncytia via 
connexin-mediated cytosolic exchange [30,31].  

Several viruses, including SARS-CoV-2, exploit host 
physiological fusogens as these molecules induce premature 
cellular senescence and immunosuppression, phenotypes 
hospitable to viral replication and, immune evasion [32,33].  
Indeed, cell-cell fusion is triggered by ePS, a marker of low 
immunogenicity, exploited by the SARS-CoV-2 virus to 
enter into host cells undetected [9,34-36]. Virus-upregulated 
intracellular calcium (Ca2+) activates transmembrane protein 
16F (TMEM16F), that in turn flips PS from the inner to the 
outer layer of cell membranes, promoting fusion [9]. 

Viruses, including SARS-CoV-2, can enter host cells via 
endocytosis or cell-cell fusion, processes driven by cell-
penetrating peptides (CPPs), suggesting that endocytosis 
inhibition may not always prevent infection [37-39]. Endocytosis 
requires viral protein attachment to a cell surface receptor and 
internalization of the entire virus/receptor complex. For example, 
SARS-CoV-2 binds to host angiotensin-converting enzyme-2 
(ACE-2) via its S1 protein followed by endocytosis.  On the 
other hand, ePS activates ADAM17, inducing cell-cell fusion 
via furin cleaving site (FCS) located within the S2 protein, a 
pathway independent of S1/ACE-2 attachment [40-43].

Vaccine core: the synthetic mRNA 
In contrast to traditional vaccines that present a plethora of 

viral proteins to the host immune cells, COVID-19 mRNA-
based therapeutics are limited to the antigen of interest (AOI) 
and elicit antibodies primarily against S1 receptor binding 

site (RBS) [1,12,44]. For the complete success of the above 
method, it must be assumed that the SARS-CoV-2 virus cannot 
ingress host cells by an alternative pathway.  However, several 
studies have highlighted other potential routes of viral ingress, 
including metalloprotease, integrins, glucose-regulating protein 
78 (GRP78), antibody-dependent enhancement, cell-penetrating 
peptides, and possibly HERV activation [45-47]. These entry 
points will be discussed in more detail after a brief examination 
of LNP components.

LNPs
Although transfection data is mostly proprietary, interrogation 

of LNP components can provide clues about the mRNA 
ingress into human cells [6]. For example, LNPs contain 
ionizable lipids, phospholipid 1,2-distearoyl-sn-glycero-3-
phosphocholine (DSPC), and cholesterol that can attract host 
phagocytes to internalize the particle [48-50]. Both ionizable 
lipids and DSPC resemble PS, communicating to phagocytes 
readiness for engulfment [51]. Aside from comprising an 
established “eat me” signal, ePS can also convey “fuse me” 
cues to host phagocytes that can contribute to the unintended 
consequence of pathological syncytia formation [10]. The LNP 
component, cholesterol, is also a promoter of pathological cell-
cell fusion as it can alter the asymmetry of cell membranes 
[50].  Moreover, as cell-cell fusion leads to premature cellular 
senescence and iatrogenic immunosuppression, it may partly 
explain the immune dysfunction documented in some vaccinated 
individuals [52-54].  

Polyethylene glycol (PEG)
PEG was added to the LNP to stabilize and prolong the 

mRNA duration of action (Figure 1).  The extensive utilization 
of PEG over the past few decades, suggests that preexisting 
antibodies could trigger hypersensitivity to vaccines containing 
this molecule [55,56]. Aside from allergy, PEG is also an 
established chemical fusogen that can generate pathology by 
promoting polynucleation, aneuploidy, and genomic instability 
[57-60]. In addition, PEG upregulates intracellular Ca2+, 
activating the transmembrane protein 16F (TMEM16F), a lipid 
scramblase that flips PS on the cell surface, triggering fusion, 
premature cellular senescence, and immunosuppression [61-
63]. As these phenotypes are virus-friendly, PEG-induced cell-
cell fusion may inadvertently facilitate not only SARS-CoV-2 
but also other viral infections [61,65-67].  Furthermore, ePS-
activated ADAM 10 and 17 promote syncytia formation via 
metalloprotease pathway [40,42,43].

PEG was never used in an approved vaccine therefore, its 
presence in Pfizer-BioNTech and Moderna -1273 therapeutics 
raised concerns, especially regarding anaphylactic and 
fusogenic adverse effects [53,68,69]. Moreover, PEG promotes 
temporary permeabilization of the blood-brain barrier (BBB), 
a property exploited by the pharmaceutical industry for CNS 
delivery systems [70-72]. This may account, at least in part, 
for the rare VAERS-reported neuropsychiatric symptoms, 
including neurodegenerative disorders [73-75]. Furthermore, 
earlier studies have demonstrated that PEG may interfere with 
the conformational stability of proteins, indicating that syncytia, 
cellular senescence and, dysfunctional proteostasis are highly 
intertwined [76-78].  While the attention to PEG and the need 
to further study its relation to the potential vaccine adverse 
reactions is logical and appropriate, it must be noted that 
excipients other than PEG might be also be involved in such 
reported adverse reaction events [79].

Figure 1. N1-methylpseudouridine (m1Ψ)-modified mRNA (in the 
rectangle) is surrounded by a lipid nanoparticle (LNP) comprised of 
1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and 
an ionizable lipid.  Polyethylene glycol (PEG) is conjugated with the 
lipid molecules to increase the mRNA duration of action. The mRNA 
encodes for the full-length S antigen and is flanked by two untrans-
lated regions (UTRs) and a polyadenylated (polyA) tail at the 3' end 
for stabilization. A cap at the 5’ end offers further protection from 

exonuclease recognition.



Page 3 of 7

Adonis Sfera, et al. Archives of Clinical Trials. 2022;2(2):1-7

Arch Clin Trials. 2022;2(2):1-7

DSPC and ionizable lipids
To deliver the liposome cargo to human immune cells, mRNA 

therapeutics must trick host phagocytes into internalizing LNPs 
by phagocytosis [80,81].  This is accomplished by decorating 
the liposomal particles with ionizable lipids and DSPC, an 
anionic phospholipid that mimics ePS and conveys readiness 
for phagocytosis [82,83]. This “eat me” signal is exploited by 
many viruses, including SARS-CoV-2, to enter host immune 
cells by engulfment [51]. 

Pfizer and Moderna vaccines were designed to “imitate” 
dying cells or apoptotic bodies by utilizing ionizable lipids 
and DSPC delivering mRNA directly to the immune cells’ 
translation machinery [5].  However, DSPC’s resemblance to 
PS may inadvertently activate ADAM 10 and 17, promoting 
pathological cell-cell fusion and subsequent pathology [40]. 

Taken together, LNPs mimicking ePS are engulfed by host 
immune cells, and generate anti-S1 antibodies by delivering 
the mRNA cargo to host ribosomes. However, in some cases 
the disruption of plasma cell asymmetry may inadvertently 
engender iatrogenic syncytia by activating the metalloprotease 
pathway.

Potential non-RBS modalities of SARS-CoV-2 
infection

In the sections below, we take a closer look at SARS-CoV-2 
infection by RBS/ACE-2 independent pathways that may 
escape neutralization by mRNA vaccines.

Infection by fusion, the metalloprotease pathway
SARS-CoV-2 infection can be disseminated from cell to cell 

by pathological syncytia, a FCS-dependent route also known 
as the metalloprotease pathway [84,85]. This infection modality 
may promote higher infectivity than the RBS/ACE-2 route as 
FCS deletion was demonstrated to attenuate infectivity [86]. 
Moreover, FCS activates ADAM10 and 17, master regulators 
of cell-cell fusion, enhancing both syncytia formation and 
contagiousness [11,12]. Thus, the metalloprotease pathway 
may be resistant to mRNA vaccines that were designed 
primarily to neutralize pre-fusion epitopes, likely explaining 
the emergence of COVID-19 symptoms in fully vaccinated 
individuals [2,3,40-43,87]. Furthermore, as pathological cell-
cell fusion was associated with premature cellular senescence 
and immunosuppression, the metalloprotease pathway may 
account for the dysfunctional immune responses observed 
in some vaccinated individuals [35,36,52]. Syncytia-related 
pathology may also contribute to other VAERs-documented 
post-vaccination events, including giant cell myocarditis, 
arteritis, and neurodegeneration [23,24,27,88]. 
Antibody-dependent enhancement

Antibody-dependent enhancement (ADE) is a mechanism of 
increased viral infection in the presence of partially neutralizing 
antibodies that can activate immunoglobulin G (IgG) Fc-
gamma receptors (FcγRs) [89-92]. This “Trojan horse” infection 
modality occurs when the SARS-CoV-2 virus hijacks antibodies 
to infect immune cells and decrease host antiviral defenses 
[93,94]. This infection route is routinely employed by many 
viruses, including the human cytomegalovirus (HCMV) known 
for usurping host T lymphocytes and macrophages [95-98].

The ADE infection pathway presents with the following 
characteristics: 1. direct correlation with the disease severity, 
2. independent of S1/ACE-2 attachment, and 3. probably 
unaffected by the mRNA vaccines [95,99]. 

Cell-penetrating peptides
COVID-19 proteomic studies show that SARS-CoV-2 

expresses many cell-penetrating peptides (CPP) that can promote 
viral entry and may be undeterred by the mRNA vaccines [100]. 
Indeed, many enveloped and unenveloped viruses contain CPPs 
and employ them for ingress host cells [101].

Aside from SARS-CoV-2, several other viruses, including the 
H5N1 avian influenza, dengue virus, and human papillomavirus 
can enter host cells via CPPs, indicating a common viral 
entry route [102,103]. In addition, CPPs are being utilized 
as pharmacological vehicles for intracellular delivery of 
therapeutics, highlighting the capability of these molecules to 
cross cell membranes [104]. CPPs can upregulate intracellular 
Ca2+, promoting both pathological syncytia and protein 
misfolding [105-108].

Viroporins 
Viroporins are hydrophobic, voltage-independent viral 

proteins known for piercing plasma membranes, triggering 
cell death.  Many viruses, including SARS-CoV-2, express 
viroporins and promote infectivity, as these proteins are known 
for mediating viral entry and exit [109,110].  A recent in 
silico study found that the SARS-CoV-2 virus expresses three 
viroporins, the E antigen, open reading frame 3a (ORF3a), and 
ORF8a, highlighting potential, non-RBS, routes of viral ingress 
that may be refractory to mRNA vaccines [111]. Interestingly, 
vaccine-mediated neutralization of S1 protein may contribute to 
the accumulation of other viral proteins, including viroporins, 
in the extracellular space (ECS), probably opening alternative 
entry portals for viral ingress [110,112]. In addition, viroporin 
channels disrupt the ionic homeostasis of host cells, upregulating 
intracellular Ca2+ that in turn, promotes pathological cell-cell 
fusion [113].

HERVs
FCS was reported to activate HERVs, primarily type W and K, 

triggering not only cell-cell fusion but also hyperinflammatory 
responses and dysfunctional proteostasis [114-117]. HERVs 
are viral fossils embedded in human DNA that can be 
“awakened” by the infection with exogenous viruses, cancer, or 
neuropsychiatric conditions [118-120].  

Several studies demonstrated that SARS-CoV-2 can activate 
HERV-W, an ancestral gene that encodes for the physiological 
placental fusogen syncytin-1 responsible for the merger of 
trophoblasts during the early pregnancy [114,115].  This suggests 
that the reproductive post-vaccine events may be triggered by 
the FCS pathology.  Virus-upregulated syncytin-1 may promote 
aberrant cell-cell fusion throughout the host tissues and organs, 
including the brain [121,122]. Interestingly, Omicron variant 
convalescent sera contain anti-FCS antibodies, suggesting that 
it may neutralize not only the pathological cell-cell fusion but 
also HERV activation [123,121].

Conclusions
The mRNA vaccines were approved on an emergency basis 

to combat COVID-19 pandemic. These vaccines also represent 
the first administration of LNPs at large scale. Taken together, 
they constitute milestones in the development of a novel and 
much promising therapeutics delivery field. Having said that, 
at the time of the emergency approval, the S2 viral antigen was 
insufficiently studied, and the FCS-mediated fusion pathology 
was mostly unknown. These aspects are now starting to attract 
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attention, in an effort to best understand the underlying cellular 
mechanisms, pathways and potential unintended consequences.

The Pfizer and Moderna vaccines elicit powerful neutralizing 
antibodies against the RBS located on S1 protein and block 
viral entry by endocytosis. However, the S2-dependent 
metalloprotease pathway and other potential entry portals may 
not be adequately addressed by these therapeutics. Residual 
COVID-19 symptoms, often conceptualized as vaccine adverse 
effects, could be caused by FCS-mediated pathology.  ADAM 
inhibitors and/or Omicron convalescent sera may effectively 
eradicate the SARS-CoV-2 virus by inhibiting metalloprotease 
pathway.

Disclaimer
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